

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Optimization of LBNF Support Modules

Nicola Solieri Final presentation 23 August 2016

Horn Systems Scope

- Horn Systems are located at the near site target hall.
- Current optimization efforts → 3 horns and support structures

Importance of support modules

- Support and positioning of horns and target carrier.
- Intensely radioactive environment in the target chase

- Radiation shielding
- Remote control of horn position
- Remote connection and disconnection of utitilities

Module structure

- Rectangular boxes open at the top for shielding block insertion.
- A36 steel construction
- Stainless steel in case of contact with water

- Must be designed as "life of facility" components
- Must inferface with the target chase utilizing the remote positioning mechanisms that have already been designed.

Known Module Concerns

- Shielding block temperature
- Thermal expansion / cooling affects accuracy of horn positioning
- Design solutions
 - Control rod construction to be Invar for low CTE.
 - Heat dissipating devices

Reference design and requirements

- NuMI module design used for reference.
- Shielding block is divided in "T-blocks"
- No line of sight from the top to the bottom of the module
- Number of blocks n chosen as a compromise between radiation shielding and block temperature.

- n ↑ → Block thickness ↓
 - Surface area ↑ → Heat dissipation ↑
 - Radiation shielding ↓

T-block assembly design

 Two block types required in order to fit inside the module.

• ¾ " lateral clearance required for ease of handling and better heat dissipation

- Modules analyzed at all beam energies to ensure life of facility design.
 - 60, 80 & 120 GeV.

 Large deviations from installation temperature

Horn misalignment

Two areas to focus on:

T-block assembly

Downstream end wall's "stalactite"

Problem!

11

ANSYS Steady State Thermal does NOT account for variations in air temperature

A more complex simulation is needed

First approach: iteration

Ambient temperature values layered in Steady State Thermal

Before iteration

After 2 steps

That's a 23°C difference!

As expected, air state is a key factor. We need an even better model

- Second approach: 2D CFD analysis
- Key assumption
 Block width is > 5 times its thickness

A 2D model is both physically accurate AND conservative

- The benefits are:
 - Comprehensive model: Conduction within the metal + Airflow in the gaps
 - More accurate analysis
 - Computationally convenient

- Many aspects of the problem can be simultaneously analyzed using this simulation:
 - T-block temperature
 - Airflow properties (i.e. velocity, temperature, absence of reversal)
 - Effect of boundary condition variations

A 1.1m/s difference in air speed yields a 20 Deg. C temperature reduction

- Now we have 3 methods to analyze the thermal behavior of any given t-block assembly:
 - Steady state temperature analysis
 - Steady state + fluent iteration
 - Fluent 2D analysis
- Each one has its own set of pros and cons
- A full 3D CFD analysis will probably be required in the final design stage

Cold plate design and analysis

- Temperature reached in stalactite is too high: positioning accuracy is heavily affected.
- We need a way to remove heat from that area

Cold plates are the obvious design choice

• Two possible cold configurations taken into consideration:

- Formed Tube Cold Plate (FTCP)
 - + Simple design
 - + Low cost
 - Poor performance (tube wall / plate contact resistance)

- Deep Drilled Cold Plate (DDCP)
 - + Better performance
 - Slightly higher manufacturing cost

- Key features:
 - 2 distribution channels + 9 connection channels
 - No copper → Aluminum construction
 - Water fed from bottom to maximize ΔT
 - Asymmetric design
 - Designed and tested for water flow rates between 10 l/min and 40 l/min

Welded plugs to avoid leakage

Cold plate installed on stalactite's side

Cold plate analysis

- 3D CFD analysis using ANSYS CFX:
 - Water flow
 - Parametric analysis
 - Temperature

- Without cold plates the maximum temperatures are:
 - Stalactite → 325°C
 - Low end wall → 145°C

Cold plate analysis

CFD analysis validation:

• Conceptual water ΔT is consistent with calculations by hand

 Absence of anomalies in water streamlines

Cold plate analysis

- Diminishing returns behavior was expected.
- Increasing water flow rates over 15 l/min is not justified by the incremental temperature reduction

- The horn is adjusted with respect to the module for vertical and pitch alignment.
- The modules fix the horn with respect to the beamline in the other degrees of freedom

- The horn is connected to the module through a vertical Invar rod inserted in the module end walls.
- Previous designs → Threaded connection

Problem!

• The new proposed design eliminates this problem

- Mechanism analyzed using ANSYS Steady Structural
 - 209 MPa peak stress in horizontal rod
 - Safety Factor SF = 2.5
 - Design is easily scalable if higher SF is required

Downstream horn connection

Additional feature on the bottom

Design can be modular

Upstream horn connection

Thanks for your attention

